Ru | En
НАНОРАЗМЕРНЫЕ ЭФФЕКТЫ
Когда три года назад сотрудники лаборатории нестехиометрических соединений Института химии твердого тела УрО РАН начинали работу по гранту РНФ, они ставили перед собой прежде всего фундаментальную задачу — исследовать влияние размера наночастиц на их стехиометрию. Полученные результаты были опубликованы в 35 статьях, в том числе в высокорейтинговых журналах, защищены 4 патентами. Кроме того, оказалось, что проведенные фундаментальные исследования имеют практический выход, поэтому участники проекта уделяли особое внимание прикладным разработкам. В нынешнем январе грант РНФ для ученых ИХТТ был продлен на два года. Ведь научная проблема, над которой они работают, остается актуальной для неорганической и физической химии, химии твердого тела, развития представлений о нестехиометрии неорганических материалов и распространения их на наноматериалы, в частности на наночастицы соединений переходных металлов с кислородом, углеродом и серой.
О результатах трехлетней работы по гранту и о дальнейших планах мы поговорили с руководителем проекта РНФ зав. лабораторией нестехиометрических соединений ИХТТ членом-корреспондентом РАН А.А. Ремпелем. Но прежде всего я попросила Андрея Андреевича дать определение понятия нестехиометрии.
— Давайте начнем с разъяснения того, что означает термин «стехиометрия» (от древнегреческих слов στοιχεῖον «элемент» и μετρέω «измерять»). Это система законов и правил, позволяющих рассчитывать состав веществ и количественные соотношения между их массами в химических реакциях. Открытие законов стехиометрии положило начало химии как точной науке. В стехиометрических соединениях химические элементы присутствуют в строго определенных целочисленных (кратных) соотношениях. Их еще называют дальтонидами в честь знаменитого британского ученого Джона Дальтона, сформулировавшего закон кратных отношений. Примером стехиометрического соединения может служить ионное соединение NaCl (каменная соль) или ковалентное соединение SiC (карбид кремния), а также многие другие неорганические и органические вещества.
Однако в природе и среди синтетических веществ есть и нестехиометрические соединения — те, где наблюдаются отклонения от законов стехиометрии. Основная группа таких веществ — соединения переходных металлов с кислородом, углеродом, азотом и другими легкими элементами. Они имеют переменный состав и не подчиняются закону кратных отношений. В начале XX века свойства этих соединений, названных ранее бертоллидами в честь французского химика Клода Бертолле, исследовали выдающийся российский физико-химик академик Н.С. Курнаков и его ученики, правда, на макроуровне, поскольку в те времена рентгеноструктурный анализ только зарождался. Благодаря стремительному развитию дифракционных методов исследования — рентгенографии, а затем электронографии и нейтронографии — ученые смогли установить отклонение количественных соотношений между компонентами химических соединений от правил стехиометрии.
— Чем интересны нестехиометрические соединения?
— Класс нестехиометрических соединений очень широк. Многочисленные случаи образования бертоллидов открыты среди оксидов, сульфидов, карбидов, гидридов и др. Нестехиометрия предполагает существование фаз химических соединений, обладающих разнообразными свойствами. Это многообразие фаз и свойств раньше либо игнорировали, либо интерпретировали неправильно, списывая эффект нарушения стехиометрии на какие-либо другие причины.
Мы занялись исследованием нестехиометрических соединений по совету академика Г.П. Швейкина около 40 лет назад. Правда, сначала работали с крупнокристаллическими материалами, хотя прекрасно понимали необходимость исследования нестехиометрии на наноуровне. И только с получением гранта РНФ появилась возможность по-настоящему углубиться в эти исследования. Мы убеждены, что игнорировать фактор нестехиометрии нельзя. Надо сказать, что и большинство научных групп в мире, которые ранее не обращали на это внимания, сейчас уделяют нестехиометрии исследуемых материалов пристальное внимание.
— Какие фундаментальные результаты вы получили в ходе выполнения проекта?
— Если коротко, то мы экспериментально и теоретически показали, что размер наночастиц влияет на их стехиометрию. Обнаруженный эффект особенно существенен при очень малом размере наночастиц. Поскольку изменяется стехиометрия наночастиц, то изменяются и их функциональные свойства, а это обстоятельство можно использовать на практике.
— У вас много прикладных разработок. Расскажите о нескольких из них.
— Думаю, стоит остановиться на двух: это наночастицы сульфида серебра и искусственная кость.
Наноструктурированный сульфид серебра — очень перспективный материал. Благодаря уникальной комбинации структуры, физических и химических свойств он будет востребован в различных областях: в оптоэлектронике, в медицинской диагностике и биотехнологии. Скорее всего, этот материал будет применяться в фотохимических ячейках, инфракрасных детекторах, быстродействующих переключателях и энергонезависимых элементах памяти, в преобразователях солнечной энергии в электроэнергию, фотокатализаторах. Но, пожалуй, самое главное заключается в том, что наносульфид серебра — тонкий биосенсор. Сульфиды вообще способны хорошо справляться с распознаванием биологических объектов, потому что их квантовые точки (наночастицы, которые проявляют квантово-размерный эффект) — отличные флуоресцентные метки. Их эмиссия не уступает по яркости используемым сегодня органическим красителям, но это не самое главное преимущество. Главное — это долговременная стабильность люминесценции под воздействием возбуждающего высокоэнергетического облучения. Благодаря этому можно изучать длительные биологические процессы.
Мы разработали универсальный и достаточно простой метод синтеза наночастиц сульфида серебра с узким распределением частиц по размеру. И, что немаловажно, для получения нанокристаллического порошка сульфида серебра мы используем безопасные реагенты.
Изменяя соотношения между концентрациями исходных компонентов, можно получать частицы с заранее заданным размером, что особенно важно в практических целях. Наш метод получения наноструктурированного сульфида серебра запатентован и в 2015 г. был удостоен диплома «100 лучших изобретений России».
Другая прикладная разработка — искусственная кость для регенеративной, то есть восстановительной, медицины. Материал-заменитель костной ткани должен обладать определенным набором свойств: прежде всего биосовместимостью с тканями человеческого организма, остеокондуктивностью (способностью обеспечивать формирование и рост костной ткани на своей поверхности), механической прочностью. И, конечно, он не должен быть токсичным. Чтобы создать такой материал, нужно решить одну из главных материаловедческих проблем — воспроизвести в нем иерархическую структуру натуральной кости на нано- и микроуровне. Чтобы искусственная кость прижилась, она должна иметь такую же, как у природной, систему пор. Ведь конечная цель протезирования — биорезорбция, то есть постепенная замена в организме искусственной кости собственной костной тканью.
В качестве исходного материала для создания искусственной кости мы выбрали два компонента: гидроксиапатит (ГАП) и монооксид титана. Оба они обладают хорошей биосовместимостью с тканями человека. Синтезом гидроксиапатита кальция еще в 1990-е годы начали заниматься наши коллеги по институту доктора химических наук С.П. Яценко и Н.А. Сабирзянов, они разработали и запатентовали способ его получения. Чтобы улучшить свойства ГАП, мы «добавили» к нему нестехиометрический монооксид титана, получив после специального вакуумного отжига соответствующий нанокомпозит.
Благодаря варьированию соотношения двух исходных фаз, а также механической активации и выбору оптимального режима отжига наноматериала в вакууме нам удалось добиться необходимой морфологической иерархии и одновременно сохранить универсальные свойства костного материала. Морфологию разработанной нами искусственной кости можно представить в виде удлиненных нанопрутков гидроксиапатита, пересекающихся в 3D пространстве и скрепляющих округлые агломераты наночастиц оксида титана с короткими прутками ГАПа. Такой материал обладает необходимой пористостью и удельной поверхностью для разрастания родных костных тканей внутри дефекта. Биорезорбируемость, т.е. способность искусственной кости постепенно заменяться натуральной, достигается благодаря растворению в физиологическом растворе человека и реализуется за оптимальное время, необходимое для быстрого заживления после протезирования. В итоге у больного появляется шанс полностью выздороветь. Мы также стремимся к тому, чтобы материалы со сложным химическим строением и морфологической иерархией можно было подгонять под индивидуальные особенности конкретного человека.
— Помимо существенного дополнительного финансирования, каковы еще преимущества работы по проекту РНФ?
— Продление гранта на три года — свидетельство того, что мы занимаемся актуальными исследованиями. РНФ поддержал не только участников проекта, но и в целом лабораторию нестехиометрических соединений как структурную единицу института. Мы продолжаем сотрудничество с коллегами из УрФУ и Новосибирска, устанавливаем новые контакты, в частности с учеными из Санкт-Петербурга и Дальневосточного отделения РАН, а также из Германии, Италии, Австрии, где проводим часть своих экспериментов. И, пожалуй, самое главное заключается в том, что грант РНФ помогает привлекать к исследованиям мирового уровня молодых ученых — они составляют 70% участников нашего проекта.
Беседу вела Е. ПОнизовкина
Фото на с. 3: член-корреспондент А.А. Ремпель; молодые участники проекта РНФ — сотрудники лаборатории нестехиометрических соединений ИХТТ. Слева направо: кандидат химических наук С.И. Садовников, магистрант И.А. Балякин, аспиранты И.Б. Дорошева и И.Д. Попов
Год:
2017
Месяц:
сентябрь
Номер выпуска:
16-17
Абсолютный номер:
1161