Skip to Content

ПРОРЫВ В ТЕХНОЛОГИИ 3D-МАГНИТОВ

Физики Уральского федерального университета, Института физики металлов УрО РАН и Института материаловедения им. Лейбница (Бремен, Германия) впервые в мире синтезировали магниты с высокой устойчивостью к размагничиванию (коэрцитивная сила). Магниты создают с помощью 3D-печати, не используя тяжелые редкоземельные металлы. Отсутствие тяжелых редкоземельных металлов снижает стоимость производства и увеличивает намагниченность материала. При этом с помощью 3D-печати можно создавать эффективные постоянные магниты любой геометрической формы.
— Мы добились почти двукратного увеличения коэрцитивной силы магнитов. На сегодня это лучший в мире результат для аддитивных технологий производства постоянных магнитов. Абсолютное значение коэрцитивности наших магнитов более чем на треть выше мировых аналогов. Принципиально важно, что инфильтрация сплава в межзеренные границы происходит одновременно с 3D-печатью магнитов. Одностадийный синтез магнитов с применением аддитивных технологий произведен впервые, — подчеркивает доцент кафедры магнетизма и магнитных наноматериалов, старший научный сотрудник отдела магнетизма твердых тел УрФУ и лаборатории магнетизма и магнитных наноструктур ИФМ УрО РАН Алексей Волегов.
Основой для изготовления магнитов стали порошки из нанокристаллического сплава неодима, железа и бора. Получать подобное соединение сравнительно легко. Изделия имеют высокие магнитные характеристики, способны сохранять намагниченное состояние, когда его пытаются перемагнитить, а также не содержат дорогостоящий кобальт, который применяется в литий-ионных аккумуляторах.
— Мы использовали порошкообразный сплав на основе неодима двух типов: нанокристаллический с размером зерен 25 нанометров и микрокристаллический с размером зерен 450 нанометров. Отжигая нанокристаллический сплав при температуре 10 000°С в течение получаса, мы вырастили кристаллиты со средним размером 450 нм. Обменное взаимодействие этих зерен и состояние границы между ними и определяют гистерезисные магнитные свойства сплавов. С одной стороны, межзеренное взаимодействие позволяет в некоторых случаях увеличить остаточную намагниченность и уменьшить содержание редкоземельных металлов, с другой — снижает коэрцитивную силу. Мы добивались ослабления межзеренного взаимодействия за счет изменения границы между зернами, — рассказывает Алексей Волегов.
Сейчас ученые работают над повышением коэрцитивной силы микрокристаллических магнитов. Их цель — экономичное серийное 3D-производство постоянных магнитов с высокой коэрцитивной силой и многообразной конфигурацией без использования тяжелых редкоземельных элементов. Исследования ученых Уральского федерального университета и их коллег из Института материаловедения им. Лейбница поддержаны грантами Министерства науки и высшего образования РФ и German Science Foundation.
Анна Маринович, пресс-служба Уральского федерального университета
 
Год: 
2020
Месяц: 
июнь
Номер выпуска: 
12
Абсолютный номер: 
1215
Изменено 02.07.2020 - 11:26


2012 © Российская академия наук Уральское отделение
620990, г. Екатеринбург, ул. Первомайская, 91
makarov@prm.uran.ru +7(343) 374-07-47