Skip to Content

ОТКРЫТИЕ НА КОНЧИКЕ ЛУЧА

11 февраля члены международной коллаборации LIGO (лазерной гравитационно-волновой обсерватории-интерферометра), объединяющей сотни ученых из семнадцати стран, в том числе из России, объявили о первой прямой регистрации гравитационных волн. На следующий день, 12 февраля в журнале Physical Review Letters вышла статья под названием «Наблюдение гравитационных волн от слияния бинарных черных дыр». Когда-то обнаружение Нептуна немецким астрономом Галле на основании расчетов французского математика Леверье назвали открытием на кончике пера. Существование гравитационных волн также было теоретически предсказано Альбертом Эйнштейном ровно 100 лет назад, в его статье 1916 года. Подтверждение предсказания можно назвать открытием на кончике луча — лазерного.
Прокомментировать неординарное событие мы попросили заведующего лабораторией теоретической физики Института электрофизики УрО РАН академика Михаила Виссарионовича САДОВСКОГО:

— Действительно, неожиданным это крупное открытие в экспериментальной физике последних лет назвать нельзя. Существование гравитационных волн естественно следовало из общей теории относительности Эйнштейна, или современной теории гравитации. Если существуют электромагнитные волны, то должны иметь место и гравитационные возмущения, которые распространяются в виде волн со скоростью света и локально изменяют геометрию пространства и времени. Предсказание о существовании гравитационных волн позволило, например, объяснить изменение темпов сближения тесных систем двойных звезд.
Чтобы понять, что такое гравитационная волна, представим четыре шарика, подвешенные крест-накрест. Если произойдет гравитационное возмущение, два шарика отклонятся друг от друга на определенное расстояние, а другие два одновременно с этим устремятся навстречу друг другу; в следующей фазе волны их движение будет противоположным. В итоге, под действием гравитационной волны все четыре шарика начнут синхронно колебаться. Но это воображаемый эксперимент. В повседневной жизни никто не чувствует и не наблюдает гравитационные волны, они ни на что не оказывают влияния, потому что гравитационные взаимодействия очень слабые по сравнению, например, с электромагнитными. И хотя большинство физиков-теоретиков никогда не сомневались в существовании гравитационных волн, задача их экспериментальной регистрации в земных условиях представлялась очень сложной. Надеяться оставалось только на космос — там происходят мощные гравитационные возмущения, и вызванные ими волны могут дойти до Земли.
Косвенное подтверждение существования гравитационных волн было получено в 1970-е годы американскими астрофизиками Джозефом Тейлором и Расселом Халсом, которые открыли и исследовали двойной радиопульсар PSR 1913+16 — пару вращающихся друг вокруг друга нейтронных звезд. При этом вращении большие массы излучают гравитационные волны и теряют энергию, из-за чего движение их замедляется, а орбита обращения сжимается. Наблюдая за двойным радиопульсаром в течение пятнадцати лет, ученые обнаружили уменьшение орбитального периода, причем скорость этого замедления (около 76 микросекунд в год) идеально описывается уравнениями общей теории относительности, которая предсказывает потерю энергии звездной пары, обусловленную гравитационным излучением. За открытие и исследование радиопульсара PSR 1913+16 Дж. Тейлор и Р. Халс в 1993 году были удостоены Нобелевской премии по физике. Между тем задача прямой регистрации гравитационных эффектов по-прежнему оставалась. Впервые ее попытался решить еще в 1960-е годы американский физик Джозеф Вебер. Он разработал первые детекторы — два массивных алюминиевых цилиндра, подвешенных на большом расстоянии друг от друга. По мысли Вебера, большая гравитационная волна заставит их колебаться в унисон, и таким образом ее прохождение можно будет зарегистрировать. В 1968 году он объявил о регистрации гравитационных волн на своих детекторах, но результаты его экспериментов были подвергнуты сомнению другими исследователями. К сожалению, до нынешнего триумфа основанного им направления Джозеф Вебер не дожил. Впрочем, вклад ученого в гравитационно-волновую астрономию научным сообществом признан.
В СССР и России пионером гравитационно-волновых исследований стал член-корреспондент РАН Владимир Борисович Брагинский. Он скептически относился к опытам Вебера, считая, что такими детекторами ничего зарегистрировать нельзя, но продолжал работать в этом направлении. А схема, реализованная в нынешнем эксперименте, была предложена также отечественными учеными — профессором Михаилом Евгеньевичем Герценштейном и академиком Владиславом Ивановичем Пустовойтом в статье, опубликованной в «Журнале экспериментальной и теоретической физики» за 1962 год. Схема эта достаточно проста: надо построить интерферометр Майкельсона, принцип действия которого заключается в следующем: пучок света из источника направляется к зеркалу, расположенному от него на некотором расстоянии, отражается от зеркала и возвращается обратно, а второй световой сигнал пускается в перпендикулярном направлении, он также отражается от зеркала и возвращается. В точке пересечения световых сигналов на детекторах можно посмотреть картину интерференции. В случае прохождения гравитационной волны зеркала начинают синхронно дрожать, и картина интерференции меняется. Благодаря тому, что оптика — наука очень точная, появляется возможность зафиксировать даже очень слабый гравитационный эффект.
На этом принципе работает LIGO, где было совершено сенсационное открытие. Обсерватория состоит из двух установок: одна размещена в Хэнфорде, штат Вашингтон (на фото), другая — в Ливингстоне, штат Луизиана, на расстоянии около 3 тысяч км. У каждого интерферометра два «плеча» длиной по 4 км, расположенных перпендикулярно друг другу. Это трубы, внутри которых пускается лазерный луч. Если придет гравитационная волна, то в обоих интерферометрах на детекторе в точке пересечения лучей синхронно должна возникнуть характерная картина интерференции.
Инициаторами проекта LIGO в 1980-е годы стали профессора Калифорнийского технологического института Кип Торн (кстати, один из авторов сценария к космическому боевику «Интерстеллар») и Рональд Дривер, а также профессор Массачусетского технологического института Райнер Вайсс. Строительство LIGO обошлось в 300 млн долларов плюс расходы на эксплуатацию и модернизацию. Он был запущен в 2002 году и работал до 2010. Однако в тот период гравитационные волны зарегистрировать не удалось, фиксировались лишь различные шумы. Затем интерферометр был остановлен для модернизации. Аналогичный LIGO интерферометр Virgo с трехкилометровыми плечами начал работать в 2007 году в Италии, неподалеку от Пизы. С 2011 года он проходит модернизацию, и во второй половине нынешнего должен быть запущен снова. А усовершенствованный комплекс Advanced LIGO приступил к работе в начале осени 2015 года.
И вот, вскоре после запуска, 14 сентября на детекторе LIGO был зарегистрирован сигнал, который выглядел «подозрительно» с точки зрения наблюдения гравитационных волн. Изменения интерференционной картины полностью соответствовали расчетам, которые участники коллаборации произвели заранее на случай гравитационного возмущения. Это было именно то, что должно было быть при прохождении гравитационной волны, возникшей при столкновении двух черных дыр — массивных звезд, находящихся на последней стадии жизни, «весом» 29 и 36 масс Солнца. В результате космического катаклизма образовалась черная дыра в 62 солнечных массы, а энергия трех солнечных масс перешла в гравитационное излучение, которое через 1,3 млрд световых лет дошло до нас. Если бы на тот момент интерферометр Virgo уже функционировал, то можно было бы определить, откуда пришла гравитационная волна. В этот раз сделать это не удалось, но ученые надеются, что удастся в будущем, когда LIGO и Virgo будут работать параллельно.
В списке участников международной коллаборации, насчитывающем более 200 человек, есть и наши соотечественники. Помимо члена-корреспондента РАН В.Б. Брагинского туда вошли руководитель московской группы профессор В.П. Митрофанов (МГУ), члены-корреспонденты РАН А.М. Сергеев и Е.А. Хазанов (Институт прикладной физики РАН, Нижний Новгород) и другие исследователи. Эта работа российских участников проекта частично была поддержана грантами РФФИ. К сожалению, нелепые условия предоставления грантов, принятые в РНФ, полностью исключают поддержку такого рода коллективных исследований.
И, наконец, о значении события. Надо сказать, что обнаружение таких «тяжелых» черных дыр — само по себе серьезное открытие в астрономии. А прямая регистрации гравитационных волн — это по существу рождение нового научного направления, гравитационно-волновой астрономии. Исследуя гравитационные эффекты, мы, вероятно, сможем заглянуть в самые ранние периоды формирования Вселенной. Ведь из самых ранних стадий эволюции «огненного шара», возникшего в результате Большого взрыва, световые сигналы не проходят, а гравитационные волны, излученные на этом этапе расширения Вселенной, могут до нас дойти. Замечательно и то обстоятельство, что общая теория относительности теперь практически окончательно экспериментально проверена на классическом (не квантовом) уровне и действительно очень точно описывает гравитацию. Так что состоявшееся открытие стало ярким «подарком» к столетнему юбилею этой теории.
О практическом смысле регистрации гравитационных волн пока говорить, конечно, сложно, но не исключено, что в будущем они обнаружатся. В начале XX века ведь никто не мог предположить, что, к примеру, современные GPS-навигаторы будут правильно определять ваше местоположение только с учетом эффектов общей теории относительности. Ну, а гравитационно-волновая астрономия, по-видимому, уже совсем не за горами.

Записала
Е. ПОНИЗОВКИНА
Иллюстрация на с. 5 вверху: гравитационная волна, зарегистрированная детекторами LIGO.

Год: 
2016
Месяц: 
март
Номер выпуска: 
5
Абсолютный номер: 
1133
Изменено 15.03.2016 - 12:04


2021 © Российская академия наук Уральское отделение РАН
620049, г. Екатеринбург, ул. Первомайская, 91
document@prm.uran.ru +7(343) 374-07-47