Недавно сотрудники лаборатории экотоксикологии популяций и сообществ Института экологии растений и животных УрО РАН кандидаты биологических наук О.В. Дуля и В.С. Микрюков опубликовали в журнале «New Phytologist» статью, посвященную механизмам приспособления растений к обитанию в условиях загрязнения промышленными выбросами. С помощью молекулярно-генетических методов они реконструировали историю популяций кукушкина горицвета из окрестностей Среднеуральского медеплавильного завода и проверили гипотезу о том, может ли самоопыление служить одним из механизмов приспособления этого вида к загрязнению. Мы попросили Олесю Викторовну и Владимира Сергеевича ответить на несколько вопросов.
— Обычно подобные работы носят прикладной характер. А у вас, насколько я понимаю, получилось фундаментальное исследование?
В. Микрюков: Изучение живых организмов на загрязненных человеком территориях не только необходимо для поиска путей восстановления экосистем, но и чрезвычайно интересно само по себе. В популяциях растений и животных в таких местообитаниях за относительно короткий, конечно, в эволюционном масштабе, промежуток времени проходят процессы приспособления к новым условиям. Эти процессы — своеобразная модель микроэволюции, и в них, как и вообще в эволюции, ключевую роль играют механизмы размножения.
О колоссальном значении для современной биосферы насекомых-опылителей в наше время известно даже детям. Например, в рассказе Виталия Бианки «Сова» описаны печальные последствия исчезновения опылителей клевера — шмелей: «… Шмели на чужих лугах гуляют, а на Стариков луг и не заглядывают. Клевер на лугу не родится. Корова без клеверу тощает…». А в мультфильме «Медовый заговор» (“Bee movie”) и вовсе представлена катастрофа планетарного масштаба — в течение лета без пчел гибнут все растения.
— Но это в мультфильме, а что в действительности произойдет, если растения вдруг лишатся возможности перекрестного опыления, например из-за исчезновения насекомых-опылителей?
О. Дуля: На самом деле примерно для 60% видов цветковых растений вряд ли немедленно наступят катастрофические последствия, поскольку эти виды способны к самоопылению, при котором пыльца из пыльников переносится и прорастает на рыльце пестика того же цветка. Вообще самоопыление выполняет главным образом страхующую функцию, т.е. обеспечивает выживание популяции при нехватке партнеров для скрещивания или недостатке опылителей. Как и продолжительное близкородственное скрещивание, самоопыление в течение многих поколений отрицательно сказывается на генетическом разнообразии и жизнеспособности популяции, поскольку увеличивает частоту встреч одинаковых аллелей (т.е. вариантов какого-либо гена) и тем самым повышает вероятность встречи вредных аллелей, а значит, и вероятность проявления неблагоприятных признаков (так называемую инбредную депрессию). По этой причине у многих видов растений в ходе эволюции появились разнообразные механизмы, препятствующие попаданию или прорастанию собственной пыльцы на рыльце пестика. Но в некоторых случаях самоопыление может играть положительную роль, так как способствует закреплению в популяции аллелей, ответственных за полезные для новых условий признаки, или изоляции от соседних популяций, обитающих в других условиях. Этот феномен исследователи наблюдали при заселении загрязненных территорий особями с повышенной металлоустойчивостью. Изучение целого ряда видов, обитающих на отвалах горнодобывающих шахт Великобритании, Бельгии и Франции, показало, что естественный отбор по признаку повышенной металлоустойчивости увеличивает частоту особей, склонных к самоопылению, поскольку семенное потомство самоопыляющихся материнских растений с повышенной металлоустойчивостью также устойчиво к тяжелым металлам. По данным ученых из Университета Монпелье (Франция), только для одного вида — ярутки лесной — верна обратная закономерность: частота самоопыления в металлоустойчивых популяциях этого вида на загрязненных территориях ниже, чем на чистых.