Skip to Content

Передний край

В ПОИСКАХ НОВОЙ ПАРАДИГМЫ

В последнее время наша газета много внимания уделяет медицинской тематике, конкретно — новой коронавирусной инфекции, что естественно в период пандемии. Однако успехи практической медицины, в том числе выработка стратегии борьбы с Covid19 без фундаментального знания невозможны. О теоретических проблемах патологической физиологии, изучающей закономерности возникновения, развития и исхода патологических процессов, мы побеседовали с зав. лабораторией иммунологии воспаления Института иммунологии и физиологии УрО РАН, доктором медицинских наук, профессором Евгением Юрьевичем Гусевым.
— Почему сегодня это актуально?
— На определенном этапе развития общей патологии и патологической физиологии возникло обманчивое представление, что в этой области основные фундаментальные законы уже описаны и их надо только детализировать, отчасти подобно тому, как накануне открытий Макса Планка и создания Эйнштейном теории относительности многим казалось, что классическая механика Ньютона в полной мере и абсолютно достоверно описывает физический мир.
На сегодняшний день молекулярная биология, иммунология, генетика настолько продвинулись, что некоторые каноны патофизиологии, прежде всего учения о типовых патологических процессах, устарели и стали заменяться клиническими дефинициями с идеологическими расширенными функциями.
Пример — синдром системного воспалительного ответа. Термин был введен в 1991 году для обозначения общей воспалительной реакции организма в ответ на тяжелое повреждение вне зависимости от его причины и локализации. До 2016 года этот синдром служил верификационным (подтверждающим) признаком для сепсиса, когда воспалительный процесс не ограничивается каким-то одним органом, но распространяется на весь организм. Основание для постановки такого диагноза — наличие не менее двух из четырех критериев: температура тела выше 38С, частота сердечных сокращений больше 90 ударов в минуту, частота дыхания более 20 в минуту, выраженный лейкоцитоз (повышение уровня лейкоцитов в крови). Однако на практике это не работало. С одной стороны, перечисленные признаки не всегда отражают механизмы развития критических состояний, с другой — они не специфичны. Несоответствие критериев синдрома системного воспалительного ответа и диагноза «сепсис», зафиксированное в электронных базах медицинских данных, стало одной из причин признания этого синдрома клиническим понятием, не имеющим фундаментального обоснования. Перед врачом стоит конкретная задача — вылечить больного. Между тем, как говорил известный военный теоретик Карл фон Клаузевиц, никакие тактические успехи не смогут компенсировать стратегические просчеты.

Год: 
2020
Месяц: 
октябрь
Номер выпуска: 
20
Абсолютный номер: 
1221
Изменено 27.10.2020 - 16:24

НА СТАРТЕ

14–15 сентября в Институте высокотемпературной электрохимии Уральского отделения Российской академии наук прошло первое научно-организационное совещание по проекту создания исследовательского жидкосолевого реактора (ИЖСР).
На совещании выступили представители организаций — участников проекта: ГК Росатом, НИЦ «Курчатовский институт», АО «ГНЦ НИИАР», РФЯЦ-ВНИИТФ, АО «ВНИИНМ», АО «НИКИЭТ», АО «Наука и инновации», Уральского федерального университета и ИВТЭ УрО РАН, а также Горно-химического комбината (г. Железногорск), где в 2026 г. предполагается установить жидкосолевой реактор.
Как отметил член рабочей группы Росатома по проекту ИЖСР, научный руководитель ИВТЭ УрО РАН, доктор химических наук Юрий Зайков, создать жидкосолевой реактор-сжигатель необходимо для утилизации долгоживущих радиоактивных минорактинидов, таких как америций и кюрий. Это позволит решить проблему захоронения радиоактивных отходов и сделать атомную энергетику более безопасной и экологически чистой.
Разработка жидкосолевого реактора — новое направление в атомной отрасли, требующее глубоких фундаментальных исследований и инновационных технологических решений. Сейчас проект находится на стадии НИОКР, когда актуально создание единой базы экспериментальных данных, а также координация деятельности организаций-участников. Эти вопросы и обсуждались на совещании. Оно неслучайно состоялось в Институте высокотемпературной электрохимии УрО РАН. 

Изменено 15.10.2020 - 00:21

COVID19: БЫТЬ В ПОЛНОЙ ГОТОВНОСТИ

Пандемия Covid19 остается одной из самых актуальных мировых проблем, к ней по-прежнему приковано внимание зарубежных и российских ученых, в том числе уральских. 10 сентября в ТАСС (Екатеринбург) прошла пресс-конференция, где текущую ситуацию по заболеваемости коронавирусом в России и в мире, новые способы борьбы с инфекцией и ее профилактики обсудили вице-президент РАН, председатель Уральского отделения РАН, директор Института органического синтеза УрО РАН академик Валерий Чарушин, президент Российского научного общества иммунологов, научный руководитель Института иммунологии и физиологии УрО РАН академик Валерий Черешнев, главный научный сотрудник лаборатории иммунологии воспаления Института иммунологии и физиологии УрО РАН, главный детский иммунолог Минздрава Свердловской области, профессор, доктор медицинских наук Ирина Тузанкина.
Академик Валерий Чарушин напомнил, что рассмотрению актуальной проблемы было уделено значительное внимание на летних общих собраниях РАН и УрО РАН, изучением новой коронавирусной инфекции и поиском способов ее лечения занимаются сотрудники научно-исследовательских центров Минздрава РФ и многих академических учреждений, в частности уральских (Институт органического синтеза, Институт иммунологии и физиологии УрО РАН), причем не только биологического и химического профилей. Так, Институт электрофизики УрО РАН предлагает использовать импульсные установки высокой мощности для производства дезинфекционных средств.
 Губернатор Свердловской области Евгений Куйвашев регулярно приглашает представителей Уральского отделения РАН и Уральского государственного медицинского университета на совещания, где обсуждается текущая ситуация с распространением инфекции и меры противодействия ей. Эта проблема станет центральной на сентябрьском заседании президиума УрО РАН — там будет представлена разработанная в РФЯЦ-ВНИИТФ прогнозная модель развития пандемии, которая оказалась максимально приближенной к реальности.  

Изменено 25.09.2020 - 10:31

РОЖДЕННЫЙ МЕТЕОРИТОМ

На территории гигантской Карской астроблемы (Пай-Хой, Россия) ученые Института геологии ФИЦ Коми НЦ УрО РАН (Сыктывкар) обнаружили алмазные фоссилии — новый тип природного алмаза. Ему было присвоено название «карит» по месту первой находки на р. Кара. Об истории открытия и его значении мы поговорили с заведующей лабораторией минералогии алмаза доктором геолого-минералогических наук Татьяной Григорьевной Шумиловой.
— Карит относится к импактным алмазам. Что это за алмазы и чем они отличаются от «традиционных», тех, из которых делают ювелирные украшения?
— Алмазы, использующиеся в ювелирном деле, добываются из кимберлитов и лампроитов, которые слагают трубки взрыва, выносящие к поверхности мантийный материал при прорыве магмы сквозь земную кору. Это крупнокристаллические алмазы. Однако известны и другие генетические типы алмазов. Например, импактные микро- и нанокристаллические алмазы, не имеющие ювелирной ценности, но обладающие ценными техническими свойствами. Запасы их достаточно велики. Импактные алмазы образуются при падении на Землю крупных метеоритов в результате сильного ударного воздействия на породы земной коры, содержащие графит и другие углеродистые вещества. На территории России метеоритная и импактная тематика особенно детально изучалась в 70-80-е годы прошлого века, были выявлены крупные алмазоносные астроблемы.

Год: 
2020
Месяц: 
сентябрь
Номер выпуска: 
17
Абсолютный номер: 
1218
Изменено 16.09.2020 - 13:10

ДА БУДЕТ СВЕТ, ВИДИМЫЙ И НЕВИДИМЫЙ

Человеческий глаз воспринимает лишь малую часть светового спектра — от 400 до 800 нанометров. Расширить «видимый горизонт» нам помогают люминофоры (от латинского lumen — свет и древне-греческого φορός — несущий) — вещества, способные преобразовывать поглощаемую ими энергию в световое излучение — люминесцировать. Люминофоры бывают неорганические (фосфоры) и органические (органолюминофоры). Впервые люминесценция была описана в XVIII веке Хеннигом Брандом, открывшим фосфор.
Сегодня явление люминесценции активно используется в создании люминесцентных ламп и светодиодов, в люминофорных экранах для медицинского оборудования, в цветных экранах телевизоров и других электронных приборов, в дизайне, а также в системах эвакуации и пожарной безопасности. С каждым годом технологии производства люминесцирующих веществ совершенствуются, что позволяет создавать люминофоры с улучшенными световыми качествами.
Ученые Института химии твердого тела УрО РАН во главе с доктором физико-математических наук В.Г. Зубковым синтезировали новые классы соединений, которые демонстрируют оригинальные люминесцентные эффекты. На их основе можно создавать высокоэффективные люминофоры инфракрасного и видимого диапазонов с близким белому свечением. Эта работа уральских химиков, выполняемая при поддержке РНФ, была отмечена президентом РАН академиком А.М. Сергеевым в научном отчете за 2019 г. О ее результатах мы поговорили с Владимиром Георгиевичем Зубковым.
— В чем принципиальная новизна ваших люминофоров?
— Мы создаем новые люминесцентные неорганические материалы для оптоэлектронных систем видимого и инфракрасного спектральных диапазонов. Для этого необходимо исследовать разные материалы, которые по-разному возбуждаются, по-разному излучают. Мы работаем с германатными соединениями со структурой апатита, граната, оливина. Все эти соединения обладают уникальными колебательными свойствами, которые определяют весь спектр люминесцентных свойств в инфракрасном диапазоне. На основе этих материалов можно создавать высокоэффективные люминофоры с каскадным механизмом люминесценции.

Изменено 31.08.2020 - 16:22

ПОДШИПНИК «НА ПОЛКЕ»

В Институте металлургии УрО РАН разработан новый высокоплотный порошковый антифрикционный композит на основе меди, упрочняющий компонент которого — порошок алюминида железа, а сухая смазка — добавка порошка свинца. Из этого композита изготовлен биметаллический вкладыш подшипника скольжения для двигателей внутреннего сгорания, по своим параметрам значительно превосходящий лучшие зарубежные аналоги.
Созданию нового антифрикционного материала и биметаллического вкладыша подшипника на его основе предшествовал комплекс фундаментальных и прикладных исследований, проведенных в рамках гранта РНФ сотрудниками лаборатории физической химии металлургических расплавов и лаборатории порошковых, композиционных и наноматериалов ИМЕТ УрО РАН. Полученные результаты позволили разработать технологические решения, включающие уникальные методы синтеза матрицы и упрочняющей фазы, вибрационной, механической и термической обработки новых материалов с высокими эксплуатационными характеристиками.
Физико-химические исследования новых функциональных мультифазных сплавов и композитов инициировал член-корреспондент РАН Э.А. Пастухов, а сейчас коллектив разработчиков возглавляет зав. лабораторией физической химии металлургических расплавов доктор химических наук А.Б. Шубин.

Год: 
2020
Месяц: 
июнь
Номер выпуска: 
12
Абсолютный номер: 
1215
Изменено 02.07.2020 - 11:19

ВРЕМЯ ПЕРВЫХ

Два новых сорта картофеля «Аляска» и «Терра», устойчивых к болезням и способных давать урожай уже в середине июля, представили ученые Уральского научно-исследовательского института сельского хозяйства УрО РАН. Работа велась 14 лет, сейчас доказана продуктивность новых сортов на территории от Волги до Дальнего Востока, получен патент. Новинки в ближайшие годы смогут заменить широко используемые сейчас на рынке импортные ранние сорта картофеля.
— Уникальность «Аляски» — повышенная устойчивость к распространенной болезни картофеля фитофторозу, поражающему клубни. Это исключительно уральская разработка и к штату США на самом деле не имеет никакого отношения. Поскольку болезнь сорту не страшна, то не требуется дополнительная химическая обработка. И продукт можно смело назвать экологически чистым, — рассказала «РГ» Елена Шанина, руководитель селекционно-семеноводческого центра в области картофелеводства УралНИИСХ.

Изменено 22.05.2020 - 14:51

СОЗДАН ЦЕНТР БИОТРАНСФОРМАЦИОННЫХ ТЕХНОЛОГИЙ

Ученые Уральского федерального университета (УрФУ, Екатеринбург) создали Центр биотрансформационных технологий. Его функции — проведение теоретических, экспериментальных и прикладных исследований мирового уровня, генерация разработок для последующего внедрения в производственную практику и выполнение заказов российских и зарубежных предприятий различных секторов экономики.
Уже сегодня инициаторы проекта обладают передовыми решениями и разработками, не имеющими аналогов как в нашей стране, так и за рубежом. Сферы их применения — переработка отходов овощеводства, животноводства и промышленности (в частности, атомной, металлургической и пищевой), очистка вод от тяжелых металлов, производство функциональных, то есть полезных для здоровья, продуктов питания.
«Некоторое время назад, используя биотехнологические методы, удалось выполнить задачу государственной важности — обезвредить и переработать экологически опасные техногенные отходы в виде пороховых масс, оставшихся после ликвидации Режевского химического завода в Свердловской области. При этом стоимость работ оказалась на порядок меньше, чем у компаний, предлагавших другие решения, что сэкономило средства в бюджете Минпромторга РФ. Предложенная нами успешная промышленная технология востребована и на других объектах», — рассказывает директор НПЦ «Уралбиосинтез» Дмитрий Савиных.

Год: 
2020
Месяц: 
май
Номер выпуска: 
9-10
Абсолютный номер: 
1213
Изменено 22.05.2020 - 14:40

НЕЗНАКОМКА С ПЛАТО УСТЮРТ

Уральский энтомолог Павел Юниевич Горбунов неожиданно для самого себя сделал сенсационное открытие. Научный сотрудник лаборатории птиц и наземных беспозвоночных Института экологии растений и животных УрО РАН обнаружил не просто новый вид бабочек, что в энтомологии не такая уж редкость, но целое семейство низших чешуекрылых. Почти десять лет исследований потребовалось уральскому ученому и его финским коллегам, чтобы убедиться и доказать, что мотыльки, обнаруженные на пустынном плато Устюрт (Юго-Западный Казахстан) и в каньоне реки Чарын (Юго-Восточный Казахстан), ранее не были известны науке. Новой бабочке было решено дать родовое имя Ustyurtia («устюртия») — именно так она теперь будет зарегистрирована во всех каталогах. Семейство устюртий пока включает два вида — устюртию парнолистниковую и устюртию чарынскую.
Описание нового семейства опубликовано в престижном энтомологическом журнале «Insect Systematics & Evolution». Среди авторов статьи помимо Павла Горбунова — Лаури Кайла (Финский музей естественной истории, Университет Хельсинки), Кари Нуппонен (Финляндия), Марко Мутанен (Университет Оулу, Финляндия), Мария Хейккилаа (Финский музей естественной истории, Университет Хельсинки).
Изменено 22.05.2020 - 14:25

ТЕСТ-СИСТЕМЫ ЖДУТ АПРОБАЦИИ

Важнейшая задача борьбы с пандемией COVID-19 — создание теста на антитела, то есть на содержание в плазме крови белков, которые вырабатывают клетки иммунной системы для нейтрализации вирусов. Ряд моделей таких тест-систем разработала группа пермских ученых под руководством ведущего научного сотрудника Института экологии и генетики микроорганизмов Пермского федерального исследовательского центра УрО РАН доктора биологических наук Михаила Раева. Теоретически благодаря такому тесту за несколько минут по образцу крови можно будет узнать, переболел человек COVID-19, в том числе и бессимптомно, или нет, а при появлении вакцины возникнет возможность оценить ее эффективность в каждом конкретном случае. Это не исчерпывает спектра возможностей тест-системы. Квалификация группы подтверждена пятнадцатью патентами и тридцатилетним опытом создания целой линейки моделей действующих тест-систем на определение антител к ВИЧ и стрептококкам, маркеров беременности и онкопатологий, оценку напряженности иммунной системы в ответ на вакцинацию и других. Разработки группы в этом направлении поддерживаются грантами РФФИ и РНФ. На основе авторских технологий ученые готовы создать разные варианты действующих моделей тест-систем: для домашнего самотестирования, исследования в кабинете врача или в лаборатории, в том числе с применением регистрирующей, но при этом весьма простой и недорогой аппаратуры, что позволит оценивать количество антител в исследуемом образце.

Изменено 22.05.2020 - 14:21

ИМЕТЬ ЛИНЕЙКУ ГОТОВНОСТИ

Институт органического синтеза УрО РАН (Екатеринбург) — один из самых активных «академических» участников противостояния инфекции COVID-19. Наша газета не раз писала, что именно здесь создан препарат «триазавирин», который сегодня не только проходит проверку на эффективность против новой болезни, но и уже лечит ее, разрабатываются другие лекарства. Прокомментировать эти достижения, рассказать о проблемах отечественной медицинской химии, всей нашей фармакологической отрасли мы попросили научного руководителя института, одного из ведущих химиков-органиков страны, главу уральской школы медицинской химии академика О.Н. Чупахина.    
— Уважаемый Олег Николаевич, вначале общий суперактуальный вопрос. В последнее время все чаще приходится слышать разговоры, что надо закупать как можно больше лекарств, поскольку в Европе встали выпускающие их заводы, и скоро наши аптеки опустеют. Что вы на это скажете?
— Паника — худший помощник в трудное время, но причины для беспокойства есть. Недавно я прочитал в заслуживающем доверия издании, что наша фармацевтическая отрасль с трудом дотягивает до производства 10 процентов препаратов из собственной субстанции, остальное — импорт. А в официальных сводках часто рапортуют, что мы делаем 70 процентов «своих» лекарств и будем делать больше. Может быть, и делаем, но основа там — не своя, привозная. И если ее привозить перестанут — грош цена таким показателям. Лекарства — товар ходовой, с развитием цивилизации, общества потребления они пользуются все большим спросом, люди стали покупать даже то, что им не особенно нужно, аптеки теперь на каждом шагу. И с точки зрения бизнеса гораздо выгодней наполнять их готовым импортным продуктом, чем вкладываться в сложнейшие дорогостоящие разработки и производство. Но есть еще такая вещь, как лекарственная безопасность страны, о которой надо помнить всегда и которая теперь выходит на первый план. В этом смысле наш «триазавирин», придуманный, синтезированный и производимый на Урале из своей субстанции — хороший пример для других регионов. Но за таким результатом — огромный путь, десятилетия тяжелой работы, и пока это, увы, скорее исключение, чем правило.

Изменено 27.04.2020 - 16:18

ПОТЕНЦИАЛ КОМОЛОСТИ

Уральские ученые-аграрии разрабатывают технологию редактирования генома крупного рогатого скота. На текущем этапе внимание будет сосредоточено на создании безрогих животных, и в случае удачи технология может быть применена для решения более насущных задач. Работа ученых поддержана грантом Российского научного фонда. Подробнее об исследовании корреспонденту «НУ» рассказала руководитель проекта, ведущий научный сотрудник Уральского федерального аграрного научно-исследовательского центра УрО РАН доктор биологических наук Анна Кривоногова.
— Анна Сергеевна, вначале простой вопрос: для чего в целом редактировать геном сельскохозяйственных животных?
— Это нужно, в первую очередь, для создания особей, устойчивых к опасным болезням. Многие из существующих болезней, особенно вирусной природы, такие, например, как лейкоз крупного рогатого скота, очень трудно поддаются искоренению. На оздоровительные меры уходят годы и значительные материальные ресурсы. А некоторые болезни, такие, как африканская чума свиней, наносят огромный ущерб животноводству, приводят в том числе к ликвидации поголовья, и лечения для них не существует. Если бы можно было сделать организм животного невосприимчивым к возбудителю, мы бы могли сдержать заболеваемость или даже полностью защитить поголовье от опасных инфекций. Технологии редактирования генома как раз позволяют наделить организм животного такой устойчивостью.
— Традиционная селекция для этого уже не подходит?
— Она отлично справляется с решением таких задач, как выведение животных с заданными породными качествами, с высокой продуктивностью. Однако для выведения животных, устойчивых к инфекционным болезням, методы селекции действительно не годятся. Для того чтобы найти особей, имеющих устойчивость к какой-либо инфекции, нужна очень большая выборка: среди сотен и тысяч зараженных может оказаться всего несколько невосприимчивых. А для опасных вирусных инфекций допускать такой уровень поражения поголовья немыслимо в принципе. Если же искать «устойчивых» животных при текущей заболеваемости, исследования настолько растянутся во времени, что потеряют смысл из-за мутаций возбудителя. Проще говоря, пока мы будем десятилетиями искать «устойчивых» животных, вирус будет изменяться и приобретать новые свойства, и за этими переменами нам просто не угнаться. 

Год: 
2020
Месяц: 
апрель
Номер выпуска: 
7
Абсолютный номер: 
1211
Изменено 13.04.2020 - 18:08

АЛГОРИТМ ДЛЯ ЛИКВИДАТОРОВ

В Институте математики и механики им. Н.Н. Красовского РАН построен алгоритм решения задачи последовательного обхода мегаполисов (непустых конечных множеств) с условиями предшествования и функциями стоимости, зависящими от списка заданий. За этой строгой математической формулировкой стоят вполне конкретные прикладные проблемы. Так, при демонтаже системы радиационно опасных объектов в случае аварий на атомных электростанциях, подобных Чернобылю и Фукусиме, найдены маршруты перемещения исполнителей, позволяющие минимизировать их дозовую нагрузку. Разумеется, это вовсе не значит, что ученые предполагают новые катастрофы в атомной энергетике, но они лучше других понимают: идеальный способ предотвращения любой аварии — полная к ней готовность. К тому же построенный алгоритм может быть полезен и во многих других сферах.
В минувшем году в московском издательстве «URSS» вышла монография А.Г. Ченцова, А.А. Ченцова и А.Н. Сесекина «Задачи маршрутизации перемещений с неаддитивным агрегированием затрат», где подробно рассмотрены эти вопросы. Мы поговорили об этой актуальной работе с членом-корреспондентом РАН Александром Георгиевичем Ченцовым.
— Почему вас заинтересовала «задача о ликвидаторах» аварий на атомных станциях?
— Я бы это сформулировал так: мы занимаемся задачей снижения облучения персонала АЭС при выполнении работ в условиях повышенной радиации. А обратили внимание на эту проблему мы благодаря доценту кафедры атомных станций и возобновляемых источников энергии Уральского федерального университета Олегу Ташлыкову, который рассказал, как происходит процесс демонтажа радиационно опасных объектов.  
Допустим, стоит задача дезактивировать территорию, по которой в результате аварии разбросаны точечные источники излучения. Эти источники нужно посетить с соблюдением всех необходимых требований и как-то демонтировать, т.е. выключить. Доза облучения, получаемая исполнителями, существенно зависит от маршрута их перемещений в радиационных полях, от того, в какой последовательности они будут подходить к радиационно опасным объектам. В такой задаче есть немало ограничений. Прежде всего это так называемые условия предшествования (условие типа «одно после другого»), а также «стоимости» перемещений (т.е. дозы радиации), которые зависят от списка заданий, еще не выполненных на момент перемещения, поскольку исполнитель находится под воздействием тех и только тех источников, которые еще не демонтированы. 

Год: 
2020
Месяц: 
март
Номер выпуска: 
6
Абсолютный номер: 
1210
Изменено 29.03.2020 - 17:11

ПРОРЫВ–2020

3–4 марта в Уральском федеральном университете им. первого президента России Б.Н. Ельцина (г. Екатеринбург) прошел третий научный семинар «Разработка технологий и оборудования для пирохимической переработки ОЯТ реакторов на быстрых нейтронах». Технология пирохимической переработки отработавшего ядерного топлива (ОЯТ) создается в рамках масштабного проекта Росатома «Прорыв», предполагающего эффективную переработку ОЯТ на базе замкнутого ядерного топливного цикла и создание новой экологически чистой, безопасной и экономичной энергетики.
В работе семинара приняли участие более 100 специалистов в этой области: ученые Института высокотемпературной электрохимии УрО РАН, которые в сотрудничестве с коллегами из УрФУ и научно-исследовательских институтов Росатома создают пирохимическую технологию переработки ОЯТ с использованием расплавленных солевых сред, представители предприятий Росатома, в том числе АО «Прорыв», ГНЦ НИИ атомных реакторов, Института реакторных материалов, НПО «Маяк», Сибирского химического комбината, Радиевого института им. В.Г. Хлопина, ООО НПФ «Сосны», ЗАО «СПЕКС», НТЦ по ядерной радиационной безопасности и других организаций, а также Российского химико-технологического университет им. Д.И. Менделеева, Национального исследовательского ядерного университета «МИФИ».

Изменено 18.03.2020 - 12:38

ПАРМАСТЕГА КРУПНЫМ ПЛАНОМ

Международной группе ученых удалось открыть новый вид тетрапода, жившего около 372 миллионов лет назад, и реконструировать его внешний облик. Кости Parmastega aelidae (так на латыни названо древнее животное, по-русски именуемое пармастегой) были обнаружены в южной части Тиманского кряжа (Республика Коми) и отличаются хорошей сохранностью. Животное считается одной из переходных форм между рыбами и наземными позвоночными, и находка существенно расширяет представления о том, как древние организмы осваивали сушу.
Результаты исследования опубликованы в авторитетном научном журнале ''Nature''. Коллектив авторов возглавляет научный сотрудник Института геологии Коми научного центра УрО РАН Павел Безносов. Подробнее о находке и «крокодильих» чертах пармастеги ученый рассказал в беседе с корреспондентом «НУ».
— Павел Александрович, что предшествовало статье в Nature?
— Первая современная находка пармастеги совпала с обнаружением в 2008 году целого скелета позднедевонской кистеперой рыбы из рода холоптихиус (см. «НУ», 2008, №20–21). Последующие четыре полевых сезона мы проводили масштабные раскопки на месте, где его нашли. Самым плодотворным стал 2012 год, когда Национальное географическое общество США оказало нам грантовую поддержку. Позднее мы обрабатывали собранный материал, проводили кладистические анализы, осмысливали и готовили результаты к публикации. В этом году весной закончили рукопись и передали ее в редакцию журнала.

Изменено 23.12.2019 - 13:55
Syndicate content


2021 © Российская академия наук Уральское отделение РАН
620049, г. Екатеринбург, ул. Первомайская, 91
document@prm.uran.ru +7(343) 374-07-47